6 research outputs found

    To metabolomics and beyond: a technological portfolio to investigate cancer metabolism

    Get PDF
    Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies

    Autophagy pathways in drug abusers after forensic autopsy: LC3B, ph-mTOR and p70S6K analysis

    No full text
    INTRODUCTION: Autophagy plays a role in various central nervous system diseases. Little is known about its molecular activation in drug addiction. Our aim was to investigate the signalling pathways of autophagy in brain tissues from drug abusers. METHODS: Twenty-five drug abusers with acute lethal intoxication and 10 controls were medico-legally autopsied. Brain-tissue samples from the parietal cortex and cerebellum were obtained. Expression of LC3B, phospho-mTOR (ph-mTOR) and phospho70S6 Kinase (p70S6K) was identified in tissue microarrays, with three tissue spots per case. Blood, urine or vitreous humour were tested in all cases to identify the acute intoxication. Hair analysis was performed in 14 cases to confirm chronic intoxication; the remaining cases had a documented medical history of chronic abuse. RESULTS: The autophagy marker LC3B was always positive on both the cortex and the cerebellum, stratified as strongly in 18 (72%) cases and weakly positive in seven (28%) cases. ph-mTOR was negative in all cases. The p70S6K molecule showed positivity in 14 (56%) cases on cortex tissue. The cerebellum was always negative, except for Purkinje cells. Drug abusers had statistically more double positive cases (LC3B-p70S6K) than controls ( p=0.0094). CONCLUSION: Autophagy pathways were activated in our series, and 56% of drug abusers showed simultaneous LC3B-p70S6K immunoexpression on tissue from the parietal cortex and cerebellum. This may be of value in autopsy practice as an indicator of brain damage due to drug abuse and could serve as alternative or additional double sensitive diagnostic method to detect drug-related deaths using a tissue-based rationale

    Virtual autopsy as a screening test before traditional autopsy: The verona experience on 25 Cases

    Get PDF
    Background: Interest has grown into the use of multidetector computed tomography (CT) and magnetic resonance imaging as an adjunct or alternative to the invasive autopsy. We sought to investigate these possibilities in postmortem CT scan using an innovative virtual autopsy approach. Methods: Twenty-five postmortem cases were scanned with the Philips Brilliance CT-64 and then underwent traditional autopsy. The images were interpreted by two blinded forensic pathologists assisted by a radiologist with the INFOPSY® Digital Autopsy Software System which provides three-dimensional images in Digital Imaging and Communications in Medicine format. Diagnostic validity of virtual autopsy (accuracy rate, sensitivity, specificity, and predictive values) and concordance between the two forensic pathologists (kappa intraobserver coefficients) were determined. Results: The causes of death at traditional autopsies were hemorrhage due to traumatic injuries (n = 8), respiratory failure (5), asphyxia due to drowning (4), asphyxia due to hanging or strangulation (2), heart failure (2), nontraumatic hemorrhage (1), and severe burns (1). In two cases, the cause of death could not be ascertained. In 15/23 (65%) cases, the cause of death diagnosed after virtual autopsy matched the diagnosis reported after traditional autopsy. In 8/23 cases (35%), traditional autopsy was necessary to establish the cause of death. Digital data provided relevant information for inferring both cause and manner of death in nine traumatic cases. The validity of virtual autopsy as a diagnostic tool was higher for traumatic deaths than other causes of death (accuracy 84%, sensitivity 82%, and specificity 86%). The concordance between the two forensic pathologists was almost perfect (>0.80). Conclusions: Our experience supports the use of virtual autopsy in postmortem investigations as an alternative diagnostic practice and does suggest a potential role as a screening test among traumatic deaths

    Disentangling the Association of Hydroxychloroquine Treatment with Mortality in Covid-19 Hospitalized Patients through Hierarchical Clustering

    No full text
    The efficacy of hydroxychloroquine (HCQ) in treating SARS-CoV-2 infection is harshly debated, with observational and experimental studies reporting contrasting results. To clarify the role of HCQ in Covid-19 patients, we carried out a retrospective observational study of 4,396 unselected patients hospitalized for Covid-19 in Italy (February-May 2020). Patients' characteristics were collected at entry, including age, sex, obesity, smoking status, blood parameters, history of diabetes, cancer, cardiovascular and chronic pulmonary diseases, and medications in use. These were used to identify subtypes of patients with similar characteristics through hierarchical clustering based on Gower distance. Using multivariable Cox regressions, these clusters were then tested for association with mortality and modification of effect by treatment with HCQ. We identified two clusters, one of 3,913 younger patients with lower circulating inflammation levels and better renal function, and one of 483 generally older and more comorbid subjects, more prevalently men and smokers. The latter group was at increased death risk adjusted by HCQ (HR[CI95%] = 3.80[3.08-4.67]), while HCQ showed an independent inverse association (0.51[0.43-0.61]), as well as a significant influence of cluster*HCQ interaction (p<0.001). This was driven by a differential association of HCQ with mortality between the high (0.89[0.65-1.22]) and the low risk cluster (0.46[0.39-0.54]). These effects survived adjustments for additional medications in use and were concordant with associations with disease severity and outcome. These findings suggest a particularly beneficial effect of HCQ within low risk Covid-19 patients and may contribute to clarifying the current controversy on HCQ efficacy in Covid-19 treatment

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text
    corecore